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PSSV User Manual (V2.1) 

1. Introduction 

A novel pattern-based probabilistic approach, PSSV, is developed to identify somatic structural 
variations from WGS data. Specifically, discordant and concordant read counts from paired 
samples are jointly modeled in a Bayesian framework. Each type of read counts at SV regions is 
assumed to follow a mixture of Poisson distributions with three components to denote ‘non-
mutation’, ‘heterozygous’ and ‘homozygous’ SVs in tumor or normal samples. Then, each SV is 
modeled as a mixture of hidden states representing different somatic and germline mutation 
patterns. As a unique feature of this model, we can differentiate heterozygous and homozygous 
SVs in each sample, enabling the identification of those somatic SVs with heterozygous 
mutations in normal samples and homozygous mutations in tumor samples. An Expectation-
maximization (EM) algorithm is used to iteratively estimate the model parameters and the 
posterior probability for each somatic SV region. 

 
We present an example of the PSSV workflow using a pair of tumor and normal DNA-seq bam 
files (obtained from a patient sample TCGA-A2-A0D0 of the TCGA data set); more details of 
the workflow can be found in our paper: “PSSV: A novel pattern-based probabilistic approach 
for somatic structure variation identification”. The R script of PSSV has been tested using R 3.3 
under MAC OS 10.11 and Ubuntu 12.04 64 bit.  
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2. DNA-seq data preprocessing 

With the BAM format WGS data from a pair of tumor-normal samples, we use a hierarchical 
clustering approach (which is embedded in BreakDancer v1.3.6 
https://github.com/genome/breakdancer) to generate discordant read clusters in each sample, and 
filter SVs by setting that the number of discordant reads in tumor sample is no less than 4. Here, 
users can also control the SV length scale using –m option of the BreakDancer-Max function. 
We then use GATK (https://software.broadinstitute.org/gatk/) to calculate the average 
concordant read depth within each candidate SV as well as at its two flanks in both samples. The 
concordant read depth within mutation regions can improve the sensitivity of SV prediction in 
each sample, leading to improved accuracy of somatic calling. The read depth signals at two 
flanks can be used to normalize local read counts so as to eliminate the GC bias and make the 
read counts comparable across all mutation regions. A flowchart of DNA-seq data preprocessing 
for somatic SV detection is shown in Fig. 1. There is one step called ‘Tumor sample purification’, 
which requires the input of normal cell proportion. An estimation of TCGA tumor samples can 
be found from doi:10.1038/ncomms9971.  
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Fig. 1. Flow chart of whole genome DNA-seq data processing for somatic SV detection. 
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2.1 Discordant reads clustering for SV selection 
We use BreakDancer to identify SV regions using a pair of tumor and normal whole genome 
DNA-seq bam files with the following command: 
 
$ ./bam2cfg.pl -g -h TCGA-A2-A0D0-01A.bam TCGA-A2-A0D0-10A.bam > TCGA-A2-
A0D0.cfg 
$ ./BreakDancerMax.pl -t -q 0 -f -d TCGA-A2-A0D0.cfg > TCGA-A2-A0D0.ctx 

 
Note that, for each SV, BreakDancer uses the sum of discordant reads at each region observed 
from ‘both’ tumor and normal samples to evaluate its significance. However, in our case, we are 
more focused on the different feature between tumor and normal samples for each region. Above 
significance calculation cannot be used to select candidate regions to be investigated by our 
PSSV method. Instead, we take all possible regions based on the hierarchical clustering results of 
discordant reads in each sample. In the above command, we set threshold as -q 0 to obtain all 
regions. 
 
Then, to obtain the number of discordant reads at each mutation region respectively from tumor 
and normal samples, we have provided a small binary tool as breakdancer_seperate_one to 
convert the output of BreakDancer TCGA-A2-A0D0.ctx into a more concise file as TCGA-A2-
A0D0-sep.txt. 
 
$ ./breakdancer_seperate_one TCGA-A2-A0D0.ctx TCGA-A2-A0D0-sep.txt 
 
 

The data format of TCGA-A2-A0D0-sep.txt is shown as follows: 
 
chr1 point1 chr2 point2 type size score tumor normal 
1 10211  1 10296  DEL 96 99 5 8 
1 10306  10 135524589 INS -161 99 4 8 
1 10449  7 10001  INS -108 58 0 3 
1 16450  1 16453  INS -196 48 2 1 
1 99098  12 66451267 DEL 95 33 0 2 
1 136741 1 136875 DEL 127 46 1 1 
1 537692 1 537723 INS -167 69 4 0 
1 565259 1 565311 INV -304 99 13 0 
1 569310 1 569405 INS -154 99 3 4 
… 

Now, we have a list of SVs with discordant read counts in tumor or normal samples. The 
discordant read clustering is time consuming. PSSV does not do read clustering by itself. 
Discordant read counts for deletion, insertion, inversion and translocation from a pair of tumor 
and normal samples are required to run PSSV. 
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2.2 Concordant reads coverage calculation for detected SVs 
For normalization purpose, we need to estimate read coverage with each mutation region as well 
as its two flanks. In this package, we have provided a short R script interval_transfer.R to 
extract SV locations (mainly for deletions, insertion and inversions) as well as flank regions. 
Here, each flank region is defined as a 500 bps region either on the left or right side of a SV. 
Using TCGA-A2-A0D0-sep.txt as input, three files will be created by interval_transfer.R as 
interval.bed, left.bed and right.bed. The data format of these three files meets the 
requirement of GATK for read coverage estimation.  
 

interval.bed  left.bed  right.bed 

1 10212 10296  1 9713 10212  1 10296 10795 
1 537693 537723  1 537193 537692  1 537723 538222 
1 565260 565311  1 564760 565259  1 565311 565810 
1 1034565 1034882  1 1034065 1034564  1 1034882 1035381 
1 1086842 1087027  1 1086342 1086841  1 1087027 1087526 
1 1088680 1088912  1 1088180 1088679  1 1088912 1089411 
1 1131210 1131260  1 1130710 1131209  1 1131260 1131759 
1 1598458 1598747  1 1597958 1598457  1 1598747 1599246 

… 

 

GATK is then used to estimate the average read coverage of each region (mutation or flank 
regions) using whole genome DNA-seq data of tumor and normal samples respectively. 
 
$ java -jar GenomeAnalysisTK.jar -T DepthOfCoverage -R hg19.fasta -o TCGA-A2-
A0D0-interval-tumor -I TCGA-A2-A0D0-01A.bam -L interval.bed 

$ java -jar GenomeAnalysisTK.jar -T DepthOfCoverage -R hg19.fasta -o TCGA-A2-
A0D0-interval-normal -I TCGA-A2-A0D0-10A.bam -L interval.bed 
 

In total, six files ending with sample_interval_summary will be generated including read 
coverage information at SV regions as well as their two flanks in both tumor and normal samples.  

 

2.3 Tumor sample impurity estimation  
As reported by http://dx.doi.org/10.1038/ncomms9971, the proportion of normal cells in TCGA 
breast cancer TCGA-A2-A0D0 is 0.1829. 

 
Theta=0.1829 
 

Note: there is also some other software that can be used to solve the same problem. We do not 
make any judgement of the performance of different such tools. Users can select one according 
to their own preference.  
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3 Somatic SV prediction using PSSV 
3.1 Discordant and concordant read information integration 
After generating discordant and concordant read info using the above pipeline, we provide a 
demo R script as PSSV_demo.R to detect somatic SVs, including deletions, insertions, inversions 
and chromosome translocations. We first load all data to the workspace of R as follows: 
 
sample_ID="TCGA-A2-A0D0" 
#proportion of normal cells in the tumor sample 
Theta=0.1829 

 
#load discordant reads in tumor or normal samples 
Discordant_reads<-as.matrix(read.table(paste(sample_ID,'-sep.txt', sep=''), 
header = TRUE)) 
 
#load concordant read coverage at mutation regions of tumor sample 
Tumor_interval<-as.matrix(read.table(paste(sample_ID,'-interval-
tumor.coverage.sample_interval_summary', sep=''), colClasses = c("character", 
"NULL","character", rep("NULL", 6)),  header = TRUE)) 
 
#load concordant read coverage at left flank of tumor sample 
Tumor_left<-as.matrix(read.table(paste(sample_ID,'-left-
tumor.coverage.sample_interval_summary', sep=''), colClasses = c("character", 
"NULL","character", rep("NULL", 6)),  header = TRUE)) 
 
#load concordant read coverage at right flank of tumor sample 
Tumor_right<-as.matrix(read.table(paste(sample_ID,'-right-
tumor.coverage.sample_interval_summary', sep=''), colClasses = c("character", 
"NULL","character", rep("NULL", 6)),  header = TRUE)) 
 
#load concordant read coverage at mutation regions of normal sample  
Normal_interval<-as.matrix(read.table(paste(sample_ID,'-interval-
normal.coverage.sample_interval_summary', sep=''), colClasses = c("character", 
"NULL","character", rep("NULL", 6)),  header = TRUE)) 
 
#load concordant read coverage at left flank of normal sample  
Normal_left<-as.matrix(read.table(paste(sample_ID,'-left-
normal.coverage.sample_interval_summary', sep=''), colClasses = c("character", 
"NULL","character", rep("NULL", 6)),  header = TRUE)) 
 
#load concordant read coverage at right flank of normal sample  
Normal_right<-as.matrix(read.table(paste(sample_ID,'-right-
normal.coverage.sample_interval_summary', sep=''), colClasses = c("character", 
"NULL","character", rep("NULL", 6)),  header = TRUE)) 

 
Then, we use the following function Discordant_concordant_integration to integrate all 
data info together: 
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Candidate_regions<-Discordant_concordant_integration(Discordant_reads, 
Tumor_interval_location, Tumor_left_location, Tumor_right_location, 
Normal_interval_location, Normal_left_location, Normal_right_location, 
Tumor_avg_Coverage, Normal_avg_Coverage) 
 

The output variable Candidate_regions is a N x 13 matrix. Each row represents a candidate 
SV and each column is defined as follow: 
 
Candidate_regions[,1] # chromosome ID of ‘left’ breakpoint 
Candidate_regions[,2] # position of ‘left’ breakpoint 
Candidate_regions[,3] # chromosome ID of ‘right’ breakpoint 
Candidate_regions[,4] # position of ‘right’ breakpoint 
Candidate_regions[,5] # number of discordant reads in ‘tumor’ sample 
Candidate_regions[,6] # ARD within mutation region in ‘tumor’ sample 
Candidate_regions[,7] # mutation type (1: DEL, 2: INS, 3: INV, 4: TRANS) 
Candidate_regions[,8] # number of discordant reads in ‘normal’ sample 
Candidate_regions[,9] # ARD within mutation region in ‘normal’ sample 
Candidate_regions[,10] # ARD of ‘left’ flank region in ‘tumor’ sample 
Candidate_regions[,11] # ARD of ‘right’ flank region in ‘tumor ‘sample 
Candidate_regions[,12] # ARD of ‘left’ flank region in ‘normal’ sample 
Candidate_regions[,13] # ARD of ‘right’ region in ‘normal’ sample 
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3.2 Tumor sample purification and data normalization 
This is a very important step in tumor sample based genomic data analysis. We use a function 
tumor_sample_purification to achieve tumor sample purification and data normalization. 
Details of of this function is specifically presented here. 
 
tumor_sample_purfication = function(Candidate_regions, Theta) 
{ 
Purified_Candidate_regions=Candidate_regions 
Purified_Candidate_regions[which(is.nan(Purified_Candidate_regions)=='TRUE')]=0 
 
for (k in 1:nrow(Purified_Candidate_regions)) 
 { 
  aa=max(Purified_Candidate_regions[k,10],Purified_Candidate_regions[k,11]) 
  if (aa>1) 

{ 
Purified_Candidate_regions[k,5]=round(Purified_Candidate_regions[k,5]*Tumor_avg_Coverage/
max(Purified_Candidate_regions[k,10],Purified_Candidate_regions[k,11])) 
Purified_Candidate_regions[k,6]=round(Purified_Candidate_regions[k,6]*Tumor_avg_Coverage/
max(Purified_Candidate_regions[k,10],Purified_Candidate_regions[k,11])) 

} 
 

  bb=max(Purified_Candidate_regions[k,12],Purified_Candidate_regions[k,13]) 
  if (bb>1) 

{ 
Purified_Candidate_regions[k,8]=round(Purified_Candidate_regions[k,8]*Normal_avg_Coverage
/max(Purified_Candidate_regions[k,12],Purified_Candidate_regions[k,13])) 
Purified_Candidate_regions[k,9]=round(Purified_Candidate_regions[k,9]*Normal_avg_Coverage
/max(Purified_Candidate_regions[k,12],Purified_Candidate_regions[k,13])) 

} 
 

  #Normalize discordant read count in tumor sample 
  Purified_Candidate_regions[k,5]=round((Candidate_regions[k,5] 
                 -Theta*Tumor_avg_Coverage/Normal_avg_Coverage*Candidate_regions[k,8])/(1-Theta)) 
 
#Normalize read coverage in tumor sample 
  Purified_Candidate_regions[k,6]=round((Candidate_regions[k,6]  
                 -Theta*Tumor_avg_Coverage/Normal_avg_Coverage*Candidate_regions[k,9])/(1-Theta)) 
 } 
return(Purified_Candidate_regions[,c(1:9)]) 

} 

 
The output format of Purified_Candidate_regions is similar to the first 9 columns of 
Candidate_regions but with normalized read count information. 
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3.3 Somatic deletion prediction 
We have four different functions to detect deletions, insertions, inversions and translocations 
respectively. They are independent from each other so the user can select the specific SV type or 
types to predict. 

Somatic deletion calling is achieved using function Somatic_del_detection. 

DEL_results<-Somatic_del_detection(Purified_Candidate_regions, length_control, 
Tumor_avg_Coverage, Normal_avg_Coverage, L) 
 

The output variable DEL_results contains following information: 
 
DEL_results$DEL_locations[,1] #chromosome ID for deletion region 
DEL_results$DEL_locations[,2] #left breakpoint 
DEL_results$DEL_locations[,3] #right breakpoint 
 
DEL_results$DEL_reads[,1] #discordant read count in the tumor sample 
DEL_results$DEL_reads[,2] #read coverage in the tumor sample 
DEL_results$DEL_reads[,3] #discordant read count in the normal sample 
DEL_results$DEL_reads[,4] #read coverage in the normal sample 
 
DEL_lambda # estimated Poisson mean parameters for each component 
DEL_state #predicted mutation state for each deletion 
DEL_probability #posterior probability for each somatic deletion 
 

We present a demo histogram of mutation states of all candidate deletions of TCGA-A2-A0D0. 

 
Fig. 2. Number of deletion regions assigned to each state. 

  



9	
	

3.4 Somatic insertion prediction 
Somatic insertion calling is achieved using function Somatic_ins_detection. 

INS_results<-Somatic_ins_detection(Purified_Candidate_regions, 
Tumor_avg_Coverage, Normal_avg_Coverage, L) 
 

The output variable INS_results contains following information: 
 
INS_results$INS_locations[,1] #chromosome ID for insertion region 
INS_results$INS_locations[,2] #left breakpoint 
INS_results$INS_locations[,3] #right breakpoint 
 
INS_results$INS_reads[,1] #discordant read count in the tumor sample 
INS_results$INS_reads[,2] #read coverage in the tumor sample 
INS_results$INS_reads[,3] #discordant read count in the normal sample 
INS_results$INS_reads[,4] #read coverage in the normal sample 
 
INS_lambda # estimated Poisson mean parameters for each component 
INS_state #predicted mutation state for each insertion 
INS_probability #posterior probability for each somatic insertion 
 

We present a demo histogram of mutation states of all candidate insertions of TCGA-A2-A0D0. 
 

 
Fig. 3. Number of insertion regions assigned to each state. 
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3.5 Somatic inversion prediction 
Somatic insertion calling is achieved using function Somatic_inv_detection. 

INV_results<-Somatic_inv_detection(Purified_Candidate_regions, length_control, 
Tumor_avg_Coverage, Normal_avg_Coverage, L) 
 

The output variable INV_results contains following information: 
 
INV_results$INV_locations[,1] #chromosome ID for inversion region 
INV_results$INV_locations[,2] #left breakpoint 
INV_results$INV_locations[,3] #right breakpoint 
 
INV_results$INV_reads[,1] #discordant read count in the tumor sample 
INV_results$INV_reads[,2] #read coverage in the tumor sample 
INV_results$INV_reads[,3] #discordant read count in the normal sample 
INV_results$INV_reads[,4] #read coverage in the normal sample 
 
INV_lambda # estimated Poisson mean parameters for each component 
INV_state #predicted mutation state for each inversion 
INV_probability #posterior probability for each somatic inversion 
 

We present a demo histogram of mutation states of all candidate inversions of TCGA-A2-A0D0. 
 

 
Fig. 4. Number of inversion regions assigned to each state. 
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3.6 Somatic inter- or intra-chromosome translocation prediction 
Somatic translocations calling is achieved using function Somatic_trans_detection. 

TRANS_results<-Somatic_trans_detection(Purified_Candidate_regions, 
Tumor_avg_Coverage, Normal_avg_Coverage, L) 
 

The output variable TRANS_results contains following information: 
 
TRANS_results$TRANS_locations[,1] #chromosome ID for left breakpoint 
TRANS_results$TRANS_locations[,2] #left breakpoint 
TRANS_results$TRANS_locations[,3] #chromosome ID for right breakpoint 
TRANS_results$TRANS_locations[,4] #right breakpoint 
 
TRANS_results$TRANS_reads[,1] #discordant read count in the tumor sample 
TRANS_results$TRANS_reads[,2] #read coverage in the tumor sample 
TRANS_results$TRANS_reads[,3] #discordant read count in the normal sample 
TRANS_results$TRANS_reads[,4] #read coverage in the normal sample 
 
TRANS_lambda #estimated Poisson mean parameters for each component 
TRANS_state #predicted mutation state for each inversion 
TRANS_probability #posterior probability for each somatic inversion 
 

We present a demo histogram of mutation states of all candidate inversions of TCGA-A2-A0D0. 
 

 
Fig. 5. Number of translocation regions assigned to each state. 
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4. Gene annotation (optional) 
 

Finally, as described in our PSSV paper, we are mainly focused on those somatic SVs that lay in 
gene promoter and coding regions. Therefore, with gene annotation file hg19_RefSeq.txt, we 
use the following command to annotate each region with a gene if they overlap. 
#******************load reference genome hg19 *********************** 

Transcripts_hg19<-as.matrix(read.table("hg19_RefSeq.txt", header = TRUE)) 

#annotate each region with gene promoter (positive or negative 10k bps) and 
body locations 

genes_with_SVs<-annotate_SVs(Transcripts_hg19, DEL_results, INS_results, 
INV_results, TRANS_results) 

 

For deletions, insertions and inversions we expect that the mutation occurs at one gene’s 
functional region. But for translocations, they may cross two different chromosome or very 
distant locations on the same chromosome. Hence, we do gene annotation at each breakpoint of 
chromosome translocations.  

This gene annotation step is optional depending on whether the study is focused on SVs related 
to gene function or not. 


