
1	
	

PSSV User Manual (V2.1)

1. Introduction

A novel pattern-based probabilistic approach, PSSV, is developed to identify somatic structural
variations from WGS data. Specifically, discordant and concordant read counts from paired
samples are jointly modeled in a Bayesian framework. Each type of read counts at SV regions is
assumed to follow a mixture of Poisson distributions with three components to denote ‘non-
mutation’, ‘heterozygous’ and ‘homozygous’ SVs in tumor or normal samples. Then, each SV is
modeled as a mixture of hidden states representing different somatic and germline mutation
patterns. As a unique feature of this model, we can differentiate heterozygous and homozygous
SVs in each sample, enabling the identification of those somatic SVs with heterozygous
mutations in normal samples and homozygous mutations in tumor samples. An Expectation-
maximization (EM) algorithm is used to iteratively estimate the model parameters and the
posterior probability for each somatic SV region.

We present an example of the PSSV workflow using a pair of tumor and normal DNA-seq bam
files (obtained from a patient sample TCGA-A2-A0D0 of the TCGA data set); more details of
the workflow can be found in our paper: “PSSV: A novel pattern-based probabilistic approach
for somatic structure variation identification”. The R script of PSSV has been tested using R 3.3
under MAC OS 10.11 and Ubuntu 12.04 64 bit.

2	
	

2. DNA-seq data preprocessing

With the BAM format WGS data from a pair of tumor-normal samples, we use a hierarchical
clustering approach (which is embedded in BreakDancer v1.3.6
https://github.com/genome/breakdancer) to generate discordant read clusters in each sample, and
filter SVs by setting that the number of discordant reads in tumor sample is no less than 4. Here,
users can also control the SV length scale using –m option of the BreakDancer-Max function.
We then use GATK (https://software.broadinstitute.org/gatk/) to calculate the average
concordant read depth within each candidate SV as well as at its two flanks in both samples. The
concordant read depth within mutation regions can improve the sensitivity of SV prediction in
each sample, leading to improved accuracy of somatic calling. The read depth signals at two
flanks can be used to normalize local read counts so as to eliminate the GC bias and make the
read counts comparable across all mutation regions. A flowchart of DNA-seq data preprocessing
for somatic SV detection is shown in Fig. 1. There is one step called ‘Tumor sample purification’,
which requires the input of normal cell proportion. An estimation of TCGA tumor samples can
be found from doi:10.1038/ncomms9971.

Tumor.bam

BreakDancer

Left flank Mutation regions Right flank

GATK GATK GATK

Average read
coverage

Concordant read
coverage

Average read
coverage

Normal.bam

Left flank Mutation regions Right flank

GATK GATK GATK

Discordant read
clusters

Discordant read
clusters

Discordant read
count

Normalized tumor
concordant reads

Normalized normal
discordant reads

Normalized normal
concordant reads

Each candidate
mutation region

Tumor sample Normal sample

Average read
coverage

Concordant read
coverage

Average read
coverage

Discordant read
count

Normalized tumor
discordant reads

Tumor sample purification

Fig. 1. Flow chart of whole genome DNA-seq data processing for somatic SV detection.

3	
	

2.1 Discordant reads clustering for SV selection
We use BreakDancer to identify SV regions using a pair of tumor and normal whole genome
DNA-seq bam files with the following command:

$./bam2cfg.pl -g -h TCGA-A2-A0D0-01A.bam TCGA-A2-A0D0-10A.bam > TCGA-A2-
A0D0.cfg
$./BreakDancerMax.pl -t -q 0 -f -d TCGA-A2-A0D0.cfg > TCGA-A2-A0D0.ctx

Note that, for each SV, BreakDancer uses the sum of discordant reads at each region observed
from ‘both’ tumor and normal samples to evaluate its significance. However, in our case, we are
more focused on the different feature between tumor and normal samples for each region. Above
significance calculation cannot be used to select candidate regions to be investigated by our
PSSV method. Instead, we take all possible regions based on the hierarchical clustering results of
discordant reads in each sample. In the above command, we set threshold as -q 0 to obtain all
regions.

Then, to obtain the number of discordant reads at each mutation region respectively from tumor
and normal samples, we have provided a small binary tool as breakdancer_seperate_one to
convert the output of BreakDancer TCGA-A2-A0D0.ctx into a more concise file as TCGA-A2-
A0D0-sep.txt.

$./breakdancer_seperate_one TCGA-A2-A0D0.ctx TCGA-A2-A0D0-sep.txt

The data format of TCGA-A2-A0D0-sep.txt is shown as follows:

chr1 point1 chr2 point2 type size score tumor normal
1 10211 1 10296 DEL 96 99 5 8
1 10306 10 135524589 INS -161 99 4 8
1 10449 7 10001 INS -108 58 0 3
1 16450 1 16453 INS -196 48 2 1
1 99098 12 66451267 DEL 95 33 0 2
1 136741 1 136875 DEL 127 46 1 1
1 537692 1 537723 INS -167 69 4 0
1 565259 1 565311 INV -304 99 13 0
1 569310 1 569405 INS -154 99 3 4
…

Now, we have a list of SVs with discordant read counts in tumor or normal samples. The
discordant read clustering is time consuming. PSSV does not do read clustering by itself.
Discordant read counts for deletion, insertion, inversion and translocation from a pair of tumor
and normal samples are required to run PSSV.

4	
	

2.2 Concordant reads coverage calculation for detected SVs
For normalization purpose, we need to estimate read coverage with each mutation region as well
as its two flanks. In this package, we have provided a short R script interval_transfer.R to
extract SV locations (mainly for deletions, insertion and inversions) as well as flank regions.
Here, each flank region is defined as a 500 bps region either on the left or right side of a SV.
Using TCGA-A2-A0D0-sep.txt as input, three files will be created by interval_transfer.R as
interval.bed, left.bed and right.bed. The data format of these three files meets the
requirement of GATK for read coverage estimation.

interval.bed left.bed right.bed

1 10212 10296 1 9713 10212 1 10296 10795
1 537693 537723 1 537193 537692 1 537723 538222
1 565260 565311 1 564760 565259 1 565311 565810
1 1034565 1034882 1 1034065 1034564 1 1034882 1035381
1 1086842 1087027 1 1086342 1086841 1 1087027 1087526
1 1088680 1088912 1 1088180 1088679 1 1088912 1089411
1 1131210 1131260 1 1130710 1131209 1 1131260 1131759
1 1598458 1598747 1 1597958 1598457 1 1598747 1599246

…

GATK is then used to estimate the average read coverage of each region (mutation or flank
regions) using whole genome DNA-seq data of tumor and normal samples respectively.

$ java -jar GenomeAnalysisTK.jar -T DepthOfCoverage -R hg19.fasta -o TCGA-A2-
A0D0-interval-tumor -I TCGA-A2-A0D0-01A.bam -L interval.bed

$ java -jar GenomeAnalysisTK.jar -T DepthOfCoverage -R hg19.fasta -o TCGA-A2-
A0D0-interval-normal -I TCGA-A2-A0D0-10A.bam -L interval.bed

In total, six files ending with sample_interval_summary will be generated including read
coverage information at SV regions as well as their two flanks in both tumor and normal samples.

2.3 Tumor sample impurity estimation
As reported by http://dx.doi.org/10.1038/ncomms9971, the proportion of normal cells in TCGA
breast cancer TCGA-A2-A0D0 is 0.1829.

Theta=0.1829

Note: there is also some other software that can be used to solve the same problem. We do not
make any judgement of the performance of different such tools. Users can select one according
to their own preference.

5	
	

3 Somatic SV prediction using PSSV
3.1 Discordant and concordant read information integration
After generating discordant and concordant read info using the above pipeline, we provide a
demo R script as PSSV_demo.R to detect somatic SVs, including deletions, insertions, inversions
and chromosome translocations. We first load all data to the workspace of R as follows:

sample_ID="TCGA-A2-A0D0"
#proportion of normal cells in the tumor sample
Theta=0.1829

#load discordant reads in tumor or normal samples
Discordant_reads<-as.matrix(read.table(paste(sample_ID,'-sep.txt', sep=''),
header = TRUE))

#load concordant read coverage at mutation regions of tumor sample
Tumor_interval<-as.matrix(read.table(paste(sample_ID,'-interval-
tumor.coverage.sample_interval_summary', sep=''), colClasses = c("character",
"NULL","character", rep("NULL", 6)), header = TRUE))

#load concordant read coverage at left flank of tumor sample
Tumor_left<-as.matrix(read.table(paste(sample_ID,'-left-
tumor.coverage.sample_interval_summary', sep=''), colClasses = c("character",
"NULL","character", rep("NULL", 6)), header = TRUE))

#load concordant read coverage at right flank of tumor sample
Tumor_right<-as.matrix(read.table(paste(sample_ID,'-right-
tumor.coverage.sample_interval_summary', sep=''), colClasses = c("character",
"NULL","character", rep("NULL", 6)), header = TRUE))

#load concordant read coverage at mutation regions of normal sample
Normal_interval<-as.matrix(read.table(paste(sample_ID,'-interval-
normal.coverage.sample_interval_summary', sep=''), colClasses = c("character",
"NULL","character", rep("NULL", 6)), header = TRUE))

#load concordant read coverage at left flank of normal sample
Normal_left<-as.matrix(read.table(paste(sample_ID,'-left-
normal.coverage.sample_interval_summary', sep=''), colClasses = c("character",
"NULL","character", rep("NULL", 6)), header = TRUE))

#load concordant read coverage at right flank of normal sample
Normal_right<-as.matrix(read.table(paste(sample_ID,'-right-
normal.coverage.sample_interval_summary', sep=''), colClasses = c("character",
"NULL","character", rep("NULL", 6)), header = TRUE))

Then, we use the following function Discordant_concordant_integration to integrate all
data info together:

6	
	

Candidate_regions<-Discordant_concordant_integration(Discordant_reads,
Tumor_interval_location, Tumor_left_location, Tumor_right_location,
Normal_interval_location, Normal_left_location, Normal_right_location,
Tumor_avg_Coverage, Normal_avg_Coverage)

The output variable Candidate_regions is a N x 13 matrix. Each row represents a candidate
SV and each column is defined as follow:

Candidate_regions[,1] # chromosome ID of ‘left’ breakpoint
Candidate_regions[,2] # position of ‘left’ breakpoint
Candidate_regions[,3] # chromosome ID of ‘right’ breakpoint
Candidate_regions[,4] # position of ‘right’ breakpoint
Candidate_regions[,5] # number of discordant reads in ‘tumor’ sample
Candidate_regions[,6] # ARD within mutation region in ‘tumor’ sample
Candidate_regions[,7] # mutation type (1: DEL, 2: INS, 3: INV, 4: TRANS)
Candidate_regions[,8] # number of discordant reads in ‘normal’ sample
Candidate_regions[,9] # ARD within mutation region in ‘normal’ sample
Candidate_regions[,10] # ARD of ‘left’ flank region in ‘tumor’ sample
Candidate_regions[,11] # ARD of ‘right’ flank region in ‘tumor ‘sample
Candidate_regions[,12] # ARD of ‘left’ flank region in ‘normal’ sample
Candidate_regions[,13] # ARD of ‘right’ region in ‘normal’ sample

7	
	

3.2 Tumor sample purification and data normalization
This is a very important step in tumor sample based genomic data analysis. We use a function
tumor_sample_purification to achieve tumor sample purification and data normalization.
Details of of this function is specifically presented here.

tumor_sample_purfication = function(Candidate_regions, Theta)
{
Purified_Candidate_regions=Candidate_regions
Purified_Candidate_regions[which(is.nan(Purified_Candidate_regions)=='TRUE')]=0

for (k in 1:nrow(Purified_Candidate_regions))
 {
 aa=max(Purified_Candidate_regions[k,10],Purified_Candidate_regions[k,11])
 if (aa>1)

{
Purified_Candidate_regions[k,5]=round(Purified_Candidate_regions[k,5]*Tumor_avg_Coverage/
max(Purified_Candidate_regions[k,10],Purified_Candidate_regions[k,11]))
Purified_Candidate_regions[k,6]=round(Purified_Candidate_regions[k,6]*Tumor_avg_Coverage/
max(Purified_Candidate_regions[k,10],Purified_Candidate_regions[k,11]))

}

 bb=max(Purified_Candidate_regions[k,12],Purified_Candidate_regions[k,13])
 if (bb>1)

{
Purified_Candidate_regions[k,8]=round(Purified_Candidate_regions[k,8]*Normal_avg_Coverage
/max(Purified_Candidate_regions[k,12],Purified_Candidate_regions[k,13]))
Purified_Candidate_regions[k,9]=round(Purified_Candidate_regions[k,9]*Normal_avg_Coverage
/max(Purified_Candidate_regions[k,12],Purified_Candidate_regions[k,13]))

}

 #Normalize discordant read count in tumor sample
 Purified_Candidate_regions[k,5]=round((Candidate_regions[k,5]
 -Theta*Tumor_avg_Coverage/Normal_avg_Coverage*Candidate_regions[k,8])/(1-Theta))

#Normalize read coverage in tumor sample
 Purified_Candidate_regions[k,6]=round((Candidate_regions[k,6]
 -Theta*Tumor_avg_Coverage/Normal_avg_Coverage*Candidate_regions[k,9])/(1-Theta))
 }
return(Purified_Candidate_regions[,c(1:9)])

}

The output format of Purified_Candidate_regions is similar to the first 9 columns of
Candidate_regions but with normalized read count information.

8	
	

3.3 Somatic deletion prediction
We have four different functions to detect deletions, insertions, inversions and translocations
respectively. They are independent from each other so the user can select the specific SV type or
types to predict.

Somatic deletion calling is achieved using function Somatic_del_detection.

DEL_results<-Somatic_del_detection(Purified_Candidate_regions, length_control,
Tumor_avg_Coverage, Normal_avg_Coverage, L)

The output variable DEL_results contains following information:

DEL_results$DEL_locations[,1] #chromosome ID for deletion region
DEL_results$DEL_locations[,2] #left breakpoint
DEL_results$DEL_locations[,3] #right breakpoint

DEL_results$DEL_reads[,1] #discordant read count in the tumor sample
DEL_results$DEL_reads[,2] #read coverage in the tumor sample
DEL_results$DEL_reads[,3] #discordant read count in the normal sample
DEL_results$DEL_reads[,4] #read coverage in the normal sample

DEL_lambda # estimated Poisson mean parameters for each component
DEL_state #predicted mutation state for each deletion
DEL_probability #posterior probability for each somatic deletion

We present a demo histogram of mutation states of all candidate deletions of TCGA-A2-A0D0.

Fig. 2. Number of deletion regions assigned to each state.

9	
	

3.4 Somatic insertion prediction
Somatic insertion calling is achieved using function Somatic_ins_detection.

INS_results<-Somatic_ins_detection(Purified_Candidate_regions,
Tumor_avg_Coverage, Normal_avg_Coverage, L)

The output variable INS_results contains following information:

INS_results$INS_locations[,1] #chromosome ID for insertion region
INS_results$INS_locations[,2] #left breakpoint
INS_results$INS_locations[,3] #right breakpoint

INS_results$INS_reads[,1] #discordant read count in the tumor sample
INS_results$INS_reads[,2] #read coverage in the tumor sample
INS_results$INS_reads[,3] #discordant read count in the normal sample
INS_results$INS_reads[,4] #read coverage in the normal sample

INS_lambda # estimated Poisson mean parameters for each component
INS_state #predicted mutation state for each insertion
INS_probability #posterior probability for each somatic insertion

We present a demo histogram of mutation states of all candidate insertions of TCGA-A2-A0D0.

Fig. 3. Number of insertion regions assigned to each state.

10	
	

3.5 Somatic inversion prediction
Somatic insertion calling is achieved using function Somatic_inv_detection.

INV_results<-Somatic_inv_detection(Purified_Candidate_regions, length_control,
Tumor_avg_Coverage, Normal_avg_Coverage, L)

The output variable INV_results contains following information:

INV_results$INV_locations[,1] #chromosome ID for inversion region
INV_results$INV_locations[,2] #left breakpoint
INV_results$INV_locations[,3] #right breakpoint

INV_results$INV_reads[,1] #discordant read count in the tumor sample
INV_results$INV_reads[,2] #read coverage in the tumor sample
INV_results$INV_reads[,3] #discordant read count in the normal sample
INV_results$INV_reads[,4] #read coverage in the normal sample

INV_lambda # estimated Poisson mean parameters for each component
INV_state #predicted mutation state for each inversion
INV_probability #posterior probability for each somatic inversion

We present a demo histogram of mutation states of all candidate inversions of TCGA-A2-A0D0.

Fig. 4. Number of inversion regions assigned to each state.

	 	

11	
	

3.6 Somatic inter- or intra-chromosome translocation prediction
Somatic translocations calling is achieved using function Somatic_trans_detection.

TRANS_results<-Somatic_trans_detection(Purified_Candidate_regions,
Tumor_avg_Coverage, Normal_avg_Coverage, L)

The output variable TRANS_results contains following information:

TRANS_results$TRANS_locations[,1] #chromosome ID for left breakpoint
TRANS_results$TRANS_locations[,2] #left breakpoint
TRANS_results$TRANS_locations[,3] #chromosome ID for right breakpoint
TRANS_results$TRANS_locations[,4] #right breakpoint

TRANS_results$TRANS_reads[,1] #discordant read count in the tumor sample
TRANS_results$TRANS_reads[,2] #read coverage in the tumor sample
TRANS_results$TRANS_reads[,3] #discordant read count in the normal sample
TRANS_results$TRANS_reads[,4] #read coverage in the normal sample

TRANS_lambda #estimated Poisson mean parameters for each component
TRANS_state #predicted mutation state for each inversion
TRANS_probability #posterior probability for each somatic inversion

We present a demo histogram of mutation states of all candidate inversions of TCGA-A2-A0D0.

Fig. 5. Number of translocation regions assigned to each state.

12	
	

4. Gene annotation (optional)

Finally, as described in our PSSV paper, we are mainly focused on those somatic SVs that lay in
gene promoter and coding regions. Therefore, with gene annotation file hg19_RefSeq.txt, we
use the following command to annotate each region with a gene if they overlap.
#******************load reference genome hg19 ***********************

Transcripts_hg19<-as.matrix(read.table("hg19_RefSeq.txt", header = TRUE))

#annotate each region with gene promoter (positive or negative 10k bps) and
body locations

genes_with_SVs<-annotate_SVs(Transcripts_hg19, DEL_results, INS_results,
INV_results, TRANS_results)

For deletions, insertions and inversions we expect that the mutation occurs at one gene’s
functional region. But for translocations, they may cross two different chromosome or very
distant locations on the same chromosome. Hence, we do gene annotation at each breakpoint of
chromosome translocations.

This gene annotation step is optional depending on whether the study is focused on SVs related
to gene function or not.

