1. Introduction

A novel pattern-based probabilistic approach, PSSV, is developed to identify somatic structural variations from WGS data. Specifically, discordant and concordant read counts from paired samples are jointly modeled in a Bayesian framework. Each type of read counts at SV regions is assumed to follow a mixture of Poisson distributions with three components to denote 'non-mutation', 'heterozygous' and 'homozygous' SVs in tumor or normal samples. Then, each SV is modeled as a mixture of hidden states representing different somatic and germline mutation patterns. As a unique feature of this model, we can differentiate heterozygous and homozygous SVs in each sample, enabling the identification of those somatic SVs with heterozygous mutations in normal samples and homozygous mutations in tumor samples. An Expectation-maximization (EM) algorithm is used to iteratively estimate the model parameters and the posterior probability for each somatic SV region.

We present an example of the PSSV workflow using a pair of tumor and normal DNA-seq bam files (obtained from a patient sample TCGA-A2-A0D0 of the TCGA data set); more details of the workflow can be found in our paper: "PSSV: A novel pattern-based probabilistic approach for somatic structure variation identification". The R script of PSSV has been tested using R 3.3 under MAC OS 10.11 and Ubuntu 12.04 64 bit.

2. DNA-seq data preprocessing

With the BAM format WGS data from a pair of tumor-normal samples, we use a hierarchical (which is embedded in BreakDancer clustering approach v1.3.6 https://github.com/genome/breakdancer) to generate discordant read clusters in each sample, and filter SVs by setting that the number of discordant reads in tumor sample is no less than 4. Here, users can also control the SV length scale using -m option of the BreakDancer-Max function. We then use GATK (https://software.broadinstitute.org/gatk/) to calculate the average concordant read depth within each candidate SV as well as at its two flanks in both samples. The concordant read depth within mutation regions can improve the sensitivity of SV prediction in each sample, leading to improved accuracy of somatic calling. The read depth signals at two flanks can be used to normalize local read counts so as to eliminate the GC bias and make the read counts comparable across all mutation regions. A flowchart of DNA-seq data preprocessing for somatic SV detection is shown in Fig. 1. There is one step called 'Tumor sample purification', which requires the input of normal cell proportion. An estimation of TCGA tumor samples can be found from doi:10.1038/ncomms9971.

Fig. 1. Flow chart of whole genome DNA-seq data processing for somatic SV detection.

2.1 Discordant reads clustering for SV selection

We use **BreakDancer** to identify SV regions using a pair of tumor and normal whole genome DNA-seq bam files with the following command:

```
$ ./bam2cfg.pl -g -h TCGA-A2-A0D0-01A.bam TCGA-A2-A0D0-10A.bam > TCGA-A2-
A0D0.cfg
$ ./BreakDancerMax.pl -t -q 0 -f -d TCGA-A2-A0D0.cfg > TCGA-A2-A0D0.ctx
```

Note that, for each SV, BreakDancer uses the sum of discordant reads at each region observed from 'both' tumor and normal samples to evaluate its significance. However, in our case, we are more focused on the different feature between tumor and normal samples for each region. Above significance calculation cannot be used to select candidate regions to be investigated by our PSSV method. Instead, we take all possible regions based on the hierarchical clustering results of discordant reads in each sample. In the above command, we set threshold as $-q \ 0$ to obtain all regions.

Then, to obtain the number of discordant reads at each mutation region respectively from tumor and normal samples, we have provided a small binary tool as breakdancer_seperate_one to convert the output of BreakDancer TCGA-A2-A0D0.ctx into a more concise file as TCGA-A2-A0D0-sep.txt.

\$./breakdancer seperate one TCGA-A2-A0D0.ctx TCGA-A2-A0D0-sep.txt

The data format of TCGA-A2-A0D0-sep.txt is shown as follows:

chr1	point1	chr2	point2	type	size	score	tumor	normal
1	10211	1	10296	DEL	96	99	5	8
1	10306	10	135524589	INS	-161	99	4	8
1	10449	7	10001	INS	-108	58	0	3
1	16450	1	16453	INS	-196	48	2	1
1	99098	12	66451267	DEL	95	33	0	2
1	136741	1	136875	DEL	127	46	1	1
1	537692	1	537723	INS	-167	69	4	0
1	565259	1	565311	INV	-304	99	13	0
1	569310	1	569405	INS	-154	99	3	4

Now, we have a list of SVs with discordant read counts in tumor or normal samples. The discordant read clustering is time consuming. PSSV does not do read clustering by itself. Discordant read counts for deletion, insertion, inversion and translocation from a pair of tumor and normal samples are required to run PSSV.

2.2 Concordant reads coverage calculation for detected SVs

For normalization purpose, we need to estimate read coverage with each mutation region as well as its two flanks. In this package, we have provided a short R script interval_transfer.R to extract SV locations (mainly for deletions, insertion and inversions) as well as flank regions. Here, each flank region is defined as a 500 bps region either on the left or right side of a SV. Using TCGA-A2-A0D0-sep.txt as input, three files will be created by interval_transfer.R as interval.bed, left.bed and right.bed. The data format of these three files meets the requirement of GATK for read coverage estimation.

interval.bed			le	left.bed			right.bed		
1 1 1 1 1 1	10212 537693 565260 1034565 1086842 1088680 1131210	10296 537723 565311 1034882 1087027 1088912 1131260	1 1 1 1 1 1	9713 537193 564760 1034065 1086342 1088180 1130710	10212 537692 565259 1034564 1086841 1088679 1131209	1 1 1 1 1 1	10296 537723 565311 1034882 1087027 1088912 1131260	10795 538222 565810 1035381 1087526 1089411 1131759	
1	1598458	1598747	1	1597958	1598457	1	1598747	1599246	

GATK is then used to estimate the average read coverage of each region (mutation or flank regions) using whole genome DNA-seq data of tumor and normal samples respectively.

```
$ java -jar GenomeAnalysisTK.jar -T DepthOfCoverage -R hg19.fasta -o TCGA-A2-
A0D0-interval-tumor -I TCGA-A2-A0D0-01A.bam -L interval.bed
$ java -jar GenomeAnalysisTK.jar -T DepthOfCoverage -R hg19.fasta -o TCGA-A2-
A0D0-interval-normal -I TCGA-A2-A0D0-10A.bam -L interval.bed
```

In total, six files ending with sample_interval_summary will be generated including read coverage information at SV regions as well as their two flanks in both tumor and normal samples.

2.3 Tumor sample impurity estimation

As reported by http://dx.doi.org/10.1038/ncomms9971, the proportion of normal cells in TCGA breast cancer TCGA-A2-A0D0 is 0.1829.

Theta=0.1829

Note: there is also some other software that can be used to solve the same problem. We do not make any judgement of the performance of different such tools. Users can select one according to their own preference.

3 Somatic SV prediction using PSSV

3.1 Discordant and concordant read information integration

After generating discordant and concordant read info using the above pipeline, we provide a demo R script as PSSV_demo.R to detect somatic SVs, including deletions, insertions, inversions and chromosome translocations. We first load all data to the workspace of R as follows:

```
sample ID="TCGA-A2-A0D0"
#proportion of normal cells in the tumor sample
Theta=0.1829
#load discordant reads in tumor or normal samples
Discordant reads<-as.matrix(read.table(paste(sample ID,'-sep.txt', sep=''),</pre>
header = TRUE))
#load concordant read coverage at mutation regions of tumor sample
Tumor interval<-as.matrix(read.table(paste(sample ID,'-interval-</pre>
tumor.coverage.sample interval summary', sep=''), colClasses = c("character",
"NULL", "character", rep("NULL", 6)), header = TRUE))
#load concordant read coverage at left flank of tumor sample
Tumor left<-as.matrix(read.table(paste(sample ID, '-left-</pre>
tumor.coverage.sample interval summary', sep=''), colClasses = c("character",
"NULL", "character", rep("NULL", 6)), header = TRUE))
#load concordant read coverage at right flank of tumor sample
Tumor right<-as.matrix(read.table(paste(sample ID, '-right-</pre>
tumor.coverage.sample interval summary', sep=''), colClasses = c("character",
"NULL", "character", rep("NULL", 6)), header = TRUE))
#load concordant read coverage at mutation regions of normal sample
Normal interval <- as.matrix (read.table (paste (sample ID, '-interval-
normal.coverage.sample interval summary', sep=''), colClasses = c("character",
"NULL", "character", rep("NULL", 6)), header = TRUE))
#load concordant read coverage at left flank of normal sample
Normal left<-as.matrix(read.table(paste(sample ID, '-left-
normal.coverage.sample interval summary', sep=''), colClasses = c("character",
"NULL", "character", rep("NULL", 6)), header = TRUE))
#load concordant read coverage at right flank of normal sample
Normal right <- as.matrix (read.table (paste (sample ID, '-right-
normal.coverage.sample interval summary', sep=''), colClasses = c("character",
"NULL", "character", rep("NULL", 6)), header = TRUE))
```

Then, we use the following function Discordant_concordant_integration to integrate all data info together:

Candidate_regions<-Discordant_concordant_integration(Discordant_reads, Tumor_interval_location, Tumor_left_location, Tumor_right_location, Normal_interval_location, Normal_left_location, Normal_right_location, Tumor_avg_Coverage, Normal_avg_Coverage)

The output variable candidate_regions is a N x 13 matrix. Each row represents a candidate SV and each column is defined as follow:

```
Candidate_regions[,1] # chromosome ID of 'left' breakpoint
Candidate_regions[,2] # position of 'left' breakpoint
Candidate_regions[,3] # chromosome ID of 'right' breakpoint
Candidate_regions[,4] # position of 'right' breakpoint
Candidate_regions[,5] # number of discordant reads in 'tumor' sample
Candidate_regions[,6] # ARD within mutation region in 'tumor' sample
Candidate_regions[,6] # ARD within mutation region in 'tumor' sample
Candidate_regions[,7] # mutation type (1: DEL, 2: INS, 3: INV, 4: TRANS)
Candidate_regions[,8] # number of discordant reads in 'normal' sample
Candidate_regions[,9] # ARD within mutation region in 'normal' sample
Candidate_regions[,10] # ARD of 'left' flank region in 'tumor' sample
Candidate_regions[,11] # ARD of 'right' flank region in 'tumor 'sample
Candidate_regions[,12] # ARD of 'left' flank region in 'normal' sample
Candidate_regions[,13] # ARD of 'right' region in 'normal' sample
```

3.2 Tumor sample purification and data normalization

This is a very important step in tumor sample based genomic data analysis. We use a function tumor_sample_purification to achieve tumor sample purification and data normalization. Details of of this function is specifically presented here.

```
tumor sample purfication = function(Candidate regions, Theta)
Purified Candidate regions=Candidate regions
Purified Candidate regions[which(is.nan(Purified Candidate regions)=='TRUE')]=0
for (k in 1:nrow(Purified Candidate regions))
 aa=max(Purified Candidate regions[k,10], Purified Candidate regions[k,11])
 if (aa>1)
    {
       Purified Candidate regions [k,5]=round (Purified Candidate regions [k,5]*Tumor avg Coverage/
       max(Purified Candidate regions[k,10],Purified Candidate regions[k,11]))
       Purified Candidate regions[k,6]=round(Purified Candidate regions[k,6]*Tumor avg Coverage/
       max(Purified Candidate regions[k,10],Purified Candidate regions[k,11]))
    }
 bb=max(Purified Candidate regions[k,12], Purified Candidate regions[k,13])
  if (bb>1)
    {
       Purified_Candidate_regions[k,8]=round(Purified_Candidate_regions[k,8]*Normal_avg_Coverage
       /max(Purified Candidate regions[k,12],Purified Candidate regions[k,13]))
       Purified Candidate regions [k,9]=round (Purified Candidate regions [k,9]*Normal avg Coverage
       /max(Purified Candidate regions[k,12],Purified Candidate regions[k,13]))
    }
  #Normalize discordant read count in tumor sample
  Purified Candidate regions[k,5]=round((Candidate regions[k,5]
                -Theta*Tumor avg Coverage/Normal avg Coverage*Candidate regions[k,8])/(1-Theta))
#Normalize read coverage in tumor sample
 Purified Candidate regions[k,6]=round((Candidate regions[k,6]
                -Theta*Tumor avg Coverage/Normal avg Coverage*Candidate regions[k,9])/(1-Theta))
}
return(Purified Candidate regions[,c(1:9)])
}
```

The output format of Purified_Candidate_regions is similar to the first 9 columns of Candidate regions but with normalized read count information.

3.3 Somatic deletion prediction

We have four different functions to detect deletions, insertions, inversions and translocations respectively. They are independent from each other so the user can select the specific SV type or types to predict.

Somatic deletion calling is achieved using function Somatic del detection.

```
DEL_results<-Somatic_del_detection(Purified_Candidate_regions, length_control,
Tumor_avg_Coverage, Normal_avg_Coverage, L)
```

The output variable DEL results contains following information:

```
DEL_results$DEL_locations[,1] #chromosome ID for deletion region
DEL_results$DEL_locations[,2] #left breakpoint
DEL_results$DEL_locations[,3] #right breakpoint
DEL_results$DEL_reads[,1] #discordant read count in the tumor sample
DEL_results$DEL_reads[,2] #read coverage in the tumor sample
DEL_results$DEL_reads[,3] #discordant read count in the normal sample
DEL_results$DEL_reads[,4] #read coverage in the normal sample
DEL_results$DEL_reads[,4] #read coverage in the normal sample
DEL_state #predicted mutation state for each deletion
```

DEL probability #posterior probability for each somatic deletion

We present a demo histogram of mutation states of all candidate deletions of TCGA-A2-A0D0.

Histogram of DEL_results\$DEL_state

Fig. 2. Number of deletion regions assigned to each state.

3.4 Somatic insertion prediction

Somatic insertion calling is achieved using function Somatic_ins_detection.

```
INS_results<-Somatic_ins_detection(Purified_Candidate_regions,
Tumor_avg_Coverage, Normal_avg_Coverage, L)
```

The output variable INS results contains following information:

```
INS_results$INS_locations[,1] #chromosome ID for insertion region
INS_results$INS_locations[,2] #left breakpoint
INS_results$INS_locations[,3] #right breakpoint
INS_results$INS_reads[,1] #discordant read count in the tumor sample
INS_results$INS_reads[,2] #read coverage in the tumor sample
INS_results$INS_reads[,3] #discordant read count in the normal sample
INS_results$INS_reads[,4] #read coverage in the normal sample
INS_lambda # estimated Poisson mean parameters for each component
INS_state #predicted mutation state for each insertion
INS_probability #posterior probability for each somatic insertion
```

We present a demo histogram of mutation states of all candidate insertions of TCGA-A2-A0D0.

Histogram of INS_results\$INS_state

Fig. 3. Number of insertion regions assigned to each state.

3.5 Somatic inversion prediction

Somatic insertion calling is achieved using function Somatic inv detection.

```
INV_results<-Somatic_inv_detection(Purified_Candidate_regions, length_control,
Tumor_avg_Coverage, Normal_avg_Coverage, L)
```

The output variable INV results contains following information:

```
INV_results$INV_locations[,1] #chromosome ID for inversion region
INV_results$INV_locations[,2] #left breakpoint
INV_results$INV_locations[,3] #right breakpoint
INV_results$INV_reads[,1] #discordant read count in the tumor sample
INV_results$INV_reads[,2] #read coverage in the tumor sample
INV_results$INV_reads[,3] #discordant read count in the normal sample
INV_results$INV_reads[,4] #read coverage in the normal sample
INV_results$INV_reads[,4] #read coverage in the normal sample
INV_state #predicted mutation state for each inversion
INV_probability #posterior probability for each somatic inversion
```

We present a demo histogram of mutation states of all candidate inversions of TCGA-A2-A0D0.

Histogram of INV_results\$INV_state

Fig. 4. Number of inversion regions assigned to each state.

3.6 Somatic inter- or intra-chromosome translocation prediction

Somatic translocations calling is achieved using function Somatic trans detection.

```
TRANS_results<-Somatic_trans_detection(Purified_Candidate_regions,
Tumor_avg_Coverage, Normal_avg_Coverage, L)
```

The output variable TRANS results contains following information:

```
TRANS_results$TRANS_locations[,1] #chromosome ID for left breakpoint
TRANS_results$TRANS_locations[,2] #left breakpoint
TRANS_results$TRANS_locations[,3] #chromosome ID for right breakpoint
TRANS_results$TRANS_locations[,4] #right breakpoint
TRANS_results$TRANS_reads[,1] #discordant read count in the tumor sample
TRANS_results$TRANS_reads[,2] #read coverage in the tumor sample
TRANS_results$TRANS_reads[,3] #discordant read count in the normal sample
TRANS_results$TRANS_reads[,3] #discordant read count in the normal sample
TRANS_results$TRANS_reads[,4] #read coverage in the normal sample
TRANS_results$TRANS_reads[,4] #read coverage in the normal sample
TRANS_state #predicted mutation state for each inversion
TRANS probability #posterior probability for each somatic inversion
```

We present a demo histogram of mutation states of all candidate inversions of TCGA-A2-A0D0.

Histogram of TRANS_results\$TRANS_state

Fig. 5. Number of translocation regions assigned to each state.

4. Gene annotation (optional)

Finally, as described in our PSSV paper, we are mainly focused on those somatic SVs that lay in gene promoter and coding regions. Therefore, with gene annotation file hg19_RefSeq.txt, we use the following command to annotate each region with a gene if they overlap.

For deletions, insertions and inversions we expect that the mutation occurs at one gene's functional region. But for translocations, they may cross two different chromosome or very distant locations on the same chromosome. Hence, we do gene annotation at each breakpoint of chromosome translocations.

This gene annotation step is optional depending on whether the study is focused on SVs related to gene function or not.